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Abstract

Background Femoroacetabular impingement (FAI) rep-

resents a constellation of anatomical and clinical features,

but definitive diagnosis is often difficult. The high preva-

lence of cam deformity of the femoral head in the

asymptomatic population as well as clinical factors leading

to the onset of symptoms raises questions as to what other

factors increase the risk of cartilage damage and hip pain.

Questions/purposes The purpose was to identify any

differences in anatomical parameters and squat kinematics

among symptomatic, asymptomatic, and control individu-

als and if these parameters can determine individuals at risk

of developing symptoms of cam FAI.

Methods Forty-three participants (n = 43) were recruited

and divided into three groups: symptomatic (12), asymp-

tomatic (17), and control (14). Symptomatic participants

presented a cam deformity (identified by an elevated alpha

angle on CT images), pain symptoms, clinical signs, and

were scheduled for surgery. The other recruited volunteers

were blinded and unaware whether they had a cam defor-

mity. After the CT data were assessed for an elevated alpha

angle, participants with a cam deformity but who did not

demonstrate any clinical signs or symptoms were consid-

ered asymptomatic, whereas participants without a cam

deformity and without clinical signs or symptoms were

considered healthy control subjects. For each participant,

anatomical CT parameters (axial alpha angle, radial alpha

angle, femoral head-neck offset, femoral neck-shaft angle,

medial proximal femoral angle, femoral torsion, acetabular

version) were evaluated. Functional squat parameters

(maximal squat depth, pelvic range of motion) were

determined using a motion capture system. A stepwise

discriminant function analysis was used to determine
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which of the parameters were most suitable to classify each

participant with their respective subgroup.

Results The symptomatic group showed elevated alpha

angles and lower femoral neck-shaft angles, whereas the

asymptomatic group showed elevated alpha angles in

comparison with the control group. The best discriminating

parameters to determine symptoms were radial alpha angle,

femoral neck-shaft angle, and pelvic range of motion

(p \ 0.001).

Conclusions In the presence of a cam deformity, indica-

tions of a decreased femoral neck-shaft angle and reduced

pelvic range of motion can identify those at risk of

symptomatic FAI.

Level of Evidence Level III, diagnostic study. See the

Guidelines for Authors for a complete description of levels

of evidence.

Introduction

Cam-type femoroacetabular impingement (FAI), charac-

terized by an enlarged, aspherical deformity of the femoral

head and neck, is recognized as a pathomechanical disease

process of the hip and a possible cause for early adult

osteoarthritis [1, 16, 23]. This mechanical impingement is

typically observed at the limit of ROM [31, 32] when the

aspherical femoral head comes into contact with lateral

aspects of the anterosuperior labrum and acetabulum. In the

presence of a larger cam deformity, it further reduces the

clearance between the femoral head-neck junction and the

labrum, therefore imposing an obstruction and inducing

elevated stresses [35].

Defining who is at risk of impingement and cartilage

damage has been mainly based on the size and location of

the cam deformity, which has been traditionally quantified

by the alpha angle on multiplane imaging [3, 7, 36, 37, 39,

43, 45]. Several authors have shown that the severity of the

cam deformity (that is, a higher alpha angle) is associated

with an increased risk of hip pain and joint degeneration [7,

28, 33]. Typically, a cam deformity is indicated by an alpha

angle greater than 50.5� and 60� in the oblique-axial and

radial plane, respectively [7, 36, 37, 39]. However, the

accuracy and sensitivity of the alpha angle in determining

the risk of developing symptomatic FAI is inconsistent [6,

30, 34, 37, 43]. Moreover, other common radiographic

measures of the femoral head and neck and acetabulum

have been associated with symptomatic FAI [5, 10, 26, 40],

but it remains unclear as to which combination of param-

eters plays a role in identifying patients at risk of

developing symptoms. Although patients have demon-

strated higher hip stresses [35] and different hip kinematics

at higher ROMs such as during maximal squatting [31, 32],

it is still unclear why many individuals with cam deformity

do not exhibit any clinical signs [22, 38, 40].

Many individuals with cam deformities may not expe-

rience mechanical impingement or pain symptoms, thus

qualifying them as asymptomatic individuals [11, 18, 26,

43]. Therefore, we postulated that FAI symptoms may be

related to other anatomical parameters that can exacerbate

mechanical impingement in patients at risk of developing

symptoms.

The purpose of this study was to examine other ana-

tomical features of the hip that could be associated with

symptoms resulting from the cam deformity. In this study,

we addressed two research questions: (1) Can additional

anatomical parameters, in addition to the conventional

alpha angles, and functional squat parameters determine

differences among symptomatic, asymptomatic, and con-

trol individuals? (2) Which of the anatomical and

functional squat parameters best classify symptomatic,

asymptomatic, and control individuals with their respective

subgroups and identify patients at risk of developing

symptoms?

Patients and Methods

Initially, 50 male volunteers were recruited in a 2-year

period through the hospital’s Division of Orthopaedic

Surgery. The participants were classified based on indica-

tions of a cam deformity on CT scans, clinical

impingement signs, and plans to undergo hip surgery.

Symptomatic participants with the deformity, who pre-

sented themselves with hip pain and clinical signs of

impingement, were recruited from the orthopaedic sur-

geon’s clinical practice once scheduled for surgery.

Additional participants volunteered for the study and were

blinded and unaware whether they had a cam deformity.

Pelvic and knee CT data were acquired from each partic-

ipant using either a Toshiba Acquilion (Toshiba Medical

Systems Corporation, Otawara, Japan) or a GE Discover

CT750 (GE Healthcare, Mississauga, Ontario, Canada) and

observed for a cam deformity, as indicated by an elevated

alpha angle, by a musculoskeletal radiologist (KSR). After

the CT data were assessed, participants with a cam defor-

mity but who did not demonstrate any clinical signs or

symptoms were considered asymptomatic. Participants

without a cam deformity and without any clinical signs or

symptoms were considered as healthy control subjects.

Participants with any neurological or musculoskeletal dis-

orders, degenerative diseases, previous major lower limb

injuries, or a body mass index greater than 30 kg/m2 were

excluded.

This a priori classification resulted in 15 symptomatic,

19 asymptomatic, and 16 control participants. All
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participants completed pain questionnaires to ascertain

their Hip Disability and Osteoarthritis Outcome Score and

WOMAC. Participants signed and provided informed

consent before the study. The university and hospital

research institute ethics boards approved this study and all

investigations were conducted ethically in conformity with

research principles.

To remove bias from a priori classifications, CT data

were then blinded and randomly assigned new file names.

Both left and right hips were measured for multiple ana-

tomical CT measures, which included axial alpha angle,

radial alpha angle, femoral head-neck offset, femoral neck-

shaft angle, medial proximal femoral angle, femoral tor-

sion, and acetabular version using Onis 2.4 (DigitalCore,

Tokyo, Japan). To confirm the reliability of the measure-

ments, two observers (KCGN, APA) evaluated the

anatomical CT parameters, each performing two readings.

Both observers received training and instructions from a

musculoskeletal radiologist (KSR). Each observer’s second

reading was performed 2 weeks after the completion of the

first.

The axial alpha angle was measured on the oblique-axial

plane of the longitudinal femoral neck axis, observing for

the cam deformity in the anterior aspect of the femoral

head [36]. With the vertex centered at the femoral head, the

angle measured the femoral neck axis to the head-neck

junction (Fig. 1A). Anterior femoral head-neck offset was

also observed on the oblique-axial plane [11, 26], mea-

suring the offset distance between the two tangents of the

anterior femoral head and neck (Fig. 1A). The radial alpha

angle was obtained through a 1:30 clockface rotation about

the longitudinal femoral neck axis [39, 43], observing the

anterosuperior quadrant (Fig. 1B). An axial alpha angle

greater than 50.5� or radial alpha angle greater than 60�
was considered as cam deformity [6, 43].

The femoral neck-shaft angle, from the frontal plane,

was formed between the femoral neck and shaft axes

(Fig. 1C) [22, 40]. Similarly, the medial proximal femoral

angle was measured between the femoral shaft axis and the

line joining the center of the femoral head to the superior

greater trochanter (Fig. 1D) [5]. Femoral torsion was

determined as the difference between the femoral neck

horizontal and condyle horizontal angles, each taking the

angle with respect to the transverse plane’s horizontal

plane (Fig. 1E–F) [10, 15]. Acetabular version was mea-

sured on the transverse plane coincident with the left and

right femoral head centers [11, 12, 41]. This angle was

formed by the line connecting the anterior and posterior

acetabular notches and the perpendicular axis to the pos-

terior acetabular notch (Fig. 1G).

Detailed measurement protocols for each anatomical

parameter were provided to the observers before the

readings (Supplemental materials are available with the

online version of CORR1.).

Three-dimensional (3-D) hip kinematics were collected

from each participant’s maximal squat depth motion using

10 Vicon MX-13 cameras (Vicon, Los Angeles, CA, USA)

and retroreflective skin markers placed on anatomical

landmarks using a modified Helen-Hayes marker set [13,

25]. Participants were instructed to perform five maximal

dynamic squats, squatting to the lowest possible depth at a

controlled, self-selected pace. Feet were placed shoulder-

width apart, directed anteriorly, with toes and heels in full

contact with the ground during the entire squat cycle [31,

Fig. 1A–G Anatomical CT parameters measure the axial alpha angle

(AA), femoral head-neck offset (FHNO) (A), radial alpha angle (RA)

(B), femoral neck-shaft angle (FNSA) (C), medial proximal femoral

angle (MPFA) (D), neck (NH) (E) and condyle horizontals (CH)

(F) for femoral torsion, and acetabular version (AV) (G).
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32]. Five squat depths were averaged as a percentage with

respect to leg height, where ground level represented a leg

height of 0%. Total sagittal pelvic ROM was calculated

from peak pelvic angles during descent, maximal squat,

and ascent phases.

The resultant CT measurements were then unblinded

and matched with the squat results. For each of the

symptomatic, asymptomatic, or control participants, the

affected side was defined by the side with symptoms,

higher alpha angle, or smaller alpha angle, respectively.

Five participants (three symptomatic, one asymptomatic,

one control) were excluded as a result of their inability to

perform an adequate deep squat (\ 70% of leg height). A

gray zone range for the alpha angles was defined to account

for potential reading errors (axial = 50.5� ± 3�; radial =

60� ± 3�). Two participants (one asymptomatic, one

control) were excluded as a result of their alpha angles

being within this gray zone. This resulted in a final sample

size of 43 participants (n = 43), with 12 symptomatic, 17

asymptomatic, and 14 control participants.

For each anatomical CT measure, intra- and interrater

reliability was quantified using the intraclass correlation

coefficient (ICC) using two-way mixed models. Intrarater

considered single measures whereas interrater considered

average measures, both seeking absolute agreement [19,

42]. The intra- and interrater anatomical observations were

in strong to near-perfect agreement (0.847 B ICCObs1

B 0.987; 0.867 B ICCObs2 B 0.967; 0.703 B ICCObs1–2

B 0.886; Table 1). To examine if there were differences

among each of the anatomical and functional parameters

among the groups, a one-way between-groups analysis of

variance was used (a = 0.05). A stepwise discriminant

function analysis (DFA) was implemented to identify

which of the anatomical and squat kinematics parameters

were most suitable to classify each participant’s affected

hip with their respective subgroup. Similar to a hierarchical

linear regression, where multiple parameters describe the

level of variance, the DFA further predicts how subjects are

classified based on the most suitable parameters. Sample

sizes were deemed adequate because the smallest group

size (12) exceeded the number of total parameters (nine)

[44]. The DFA assumed that each of the anatomical CT and

squat parameters was treated as an independent variable for

grouping. Statistical analysis was performed using SPSS

Statistics Version 21 (IBM Corporation, Armonk, NY,

USA).

Results

Other than the alpha angles and femoral head-neck offset,

characteristic parameters of the cam deformity, the asymp-

tomatic group demonstrated similar anatomical and squat

parameters as the control group (Table 2). Both symptom-

atic and asymptomatic groups demonstrated higher axial

alpha angles (56� ± 8� and 57� ± 8�, respectively), radial

alpha angles (67� ± 6� and 71�7 ± 6�, respectively), and

lower femoral head-neck offsets (6 ± 2 mm and 7 ± 2 mm,

respectively) in comparison with the control group

(axial = 43� ± 3�, g2 = 0.517, p \ 0.001; radial = 52�
± 4�, g2 = 0.705, p \ 0.001; offset = 9 ± 1 mm,

g2 = 0.440, p \ 0.001). Femoral neck-shaft angles were

higher for the asymptomatic and control groups (127� ± 3�
and 128� ± 2�, respectively) in comparison with the symp-

tomatic group (123� ± 2�, g2 = 0.496, p \ 0.001). The

symptomatic group showed prominent femoral antetorsion

(g2 = 0.164, p = 0.039) in comparison with the control

group, but did not show any differences in medial proximal

femoral angle or acetabular version. Moreover, the symp-

tomatic group had a substantially reduced squat depth

(44% ± 10%) and pelvic ROM (11� ± 4�) in comparison

with the asymptomatic (39% ± 9%; 15� ± 7�) and control

groups (37% ± 8%; 15� ± 7�).

The best parameters to classify the participants and to

determine symptoms were radial alpha angle, femoral

neck-shaft angle, and pelvic ROM. The three-step DFA

included radial alpha angle in the first step (Wilk’s

k1 = 0.295, p \ 0.001), femoral neck-shaft angle in the

second (Wilk’s k2 = 0.157, p \ 0.001), then pelvic ROM

in the third (Wilk’s k3 = 0.135, p \ 0.001). The resultant

two predictive equations based on the standardized

canonical discriminant function coefficients were:

Function 1 ¼ 0:962 � zRAð Þ � ð0:156 � zFNSAÞ
� 0:050 � zROMð Þ

ð1Þ

Function 2 ¼ 0:325 � zRAð Þ þ 0:973 � zFNSAð Þ
þ 0:517 � zROMð Þ

ð2Þ

where zRA, zFNSA, and zROM represent the standardized

normal scores of their respective measures. Inputting an

Table 1. Intraclass correlation coefficient indicating the intra- and

interrater reliability for each measured anatomical CT parameter

Anatomical parameter Intrarater 1 Intrarater 2 Interraters 1–2

Axial alpha angle 0.957 0.948 0.881

Radial alpha angle 0.972 0.929 0.865

Femoral neck-shaft angle 0.847 0.867 0.854

Medial proximal femoral

angle

0.969 0.904 0.783

Femoral head-neck offset 0.927 0.903 0.758

Femoral torsion 0.987 0.916 0.703

Acetabular version 0.968 0.967 0.886
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additional participant’s radial alpha angle, femoral neck-

shaft angle, and pelvic ROM z-values into the predictive

equations (equations [1] and [2]), the resultant functions

would provide a visual indication of classification based on

their proximity to a group centroid (Fig. 2). It was deter-

mined that 95% (41 of 43) of the original group was

classified correctly. A participant, initially classified as

asymptomatic, was reclassified closer to the symptomatic

group based on the stepwise parameters. This asymptom-

atic participant had an elevated radial alpha angle and

decreased femoral neck-shaft angle (122�), similar to

characteristic mean values of the symptomatic group.

Another symptomatic participant was predicted to be sig-

nificantly closer to the asymptomatic group with a radial

alpha angle and femoral neck-shaft angle (125�) closer to

the mean values of the asymptomatic group (Fig. 2).

Discussion

Recent publications have highlighted the prevalence of

the cam deformity in the normal population based on the

alpha angle [17, 18, 24]. However, we do not know what

factors increase the likelihood that a patient with cam

FAI morphology will become symptomatic. To better

predict which individuals with a cam deformity who are

at risk of developing hip symptoms, we used subject-

specific motion analysis as well as additional anatomical

parameters in discriminating individuals with and without

symptoms. We found that radial alpha angle, femoral

neck-shaft angle, and pelvic ROM predicted FAI

symptoms.

Table 2. Descriptive anatomical CT parameters, squat depth parameters, and pain scores associated with the symptomatic, asymptomatic, and

control groups

Group descriptive Symptomatic Asymptomatic Control Total

Number of participants 12 17 14 43

Age (years) 38 ± 9 31 ± 5 32 ± 6 33 ± 7

Body mass index (kg/m2) 26 ± 3 25 ± 2 26 ± 3 26 ± 3

Anatomical parameter

Axial alpha angle (�) 56 ± 8* 57 ± 8* 43 ± 3 52 ± 9

Radial alpha angle (�) 67 ± 6* 71 ± 6* 52 ± 4 64 ± 10

Femoral head-neck offset (mm) 6 ± 2* 7 ± 2* 9 ± 1 7 ± 2

Femoral neck-shaft angle (�) 123 ± 2*,� 127 ± 3 128 ± 2 126 ± 3

Medial proximal femoral angle (�) 80 ± 4 83 ± 4 82 ± 4 82 ± 4

Femoral torsion (�) 14 ± 9* 13 ± 8 6 ± 7 11 ± 8

Acetabular version (�) 22 ± 5 18 ± 4 19 ± 6 19 ± 5

Maximal squat depth parameter

Depth (percent leg height) 44 ± 10 39 ± 9 37 ± 8 40 ± 9

Pelvic ROM (�) 11 ± 4 15 ± 7 15 ± 7 14 ± 6

Pain questionnaire

HOOS–pain 64 ± 21*,� 99 ± 5 99 ± 4 88 ± 20

WOMAC–pain 71 ± 21*,� 100 ± 1 99 ± 3 91 ± 18

Values are mean ± SD; *significant difference (p \ 0.05) compared with control group; �significant difference (p \ 0.05) compared with

asymptomatic group; HOOS = Hip Disability and Osteoarthritis Outcome Score.

Fig. 2 Discriminant function analysis with canonical discriminant

functions classifies symptomatic (diamond), asymptomatic (square),

and control (triangle) individuals based on the radial alpha angle,

femoral neck-shaft angle, and pelvic ROM. Group envelopes

(ellipses) are centered on the group centroids (star markers).
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One of the limitations was the number of CT parameters

considered. Because the focus was on cam-type FAI, we

selected common recurring parameters of the proximal

femur, as opposed to the acetabulum, postulated to describe

characteristics of FAI. To fully understand the relationship

among joint structures, clinical signs, and the role of ace-

tabular orientation on joint kinematics, an extensive study

of the morphological parameters associated with the ace-

tabulum (eg, lateral center-edge angle and retroversion

index) may be needed in the future along with a 3-D shape

analysis of the cam deformity [20, 21]. Because the cam

morphology is statistically more prevalent in males [2, 9,

27], our sample population consisted of only male partic-

ipants. The inclusion of females could introduce variances

in anatomical structure and squat kinematics. Nonetheless,

studies comparing sex in regard to anatomical parameters

and motion analysis should be addressed in the future. The

differences in age may also have been a limitation, because

cartilage and labral damage not only depends on the size of

the deformity, but can also increase with age. Although our

symptomatic group was slightly older, age differences were

not significant and there were a few older symptomatic

participants who performed deeper squats and wider pelvic

motions. It may have been possible that pelvic ROM was

limited by pain. During the maximal dynamic squat, par-

ticipants were asked if they experienced any discomfort or

pain during the motion and none of the patients stated that

pain limited their squat capacity. In addition, none of the

patients had evidence of osteoarthritis on radiographs.

Having said that, we cannot fully account for other possible

causes of limited squat such as apprehension by the par-

ticipant to avoid pain. It is possible that the pace of the

squat motion can affect the loading dynamics of the cam

deformity onto the articulating surfaces. A subject-specific

finite element model, incorporating the viscoelastic char-

acteristics of the cartilage, could be considered in the future

to better address the loading dynamics of the hip. The other

limitation is the use of pain to help classify the different

groups. Because there are multiple sources of pain in and

around the hip, we cannot make conclusions as to the risk

of eventual hip arthritis. Use of quantitative cartilage MRI

may provide further insight into the biomechanical

parameters associated with FAI in patients with the cam

morphology [4, 8].

We found that the symptomatic group had a substan-

tially smaller femoral neck-shaft angle with angles

approaching coxa vara; others have suggested that this can

predispose to labral-chondral damage in patients with a

cam deformity [10, 14, 45]. In addition, Bedi and associ-

ates [10] recognized that shortening of the varus neck

resulted in intraarticular and extraarticular mechanical

impingement. Hartofilakidis and associates [22] reported a

femoral neck-shaft angle for their symptomatic group

(119�), which corresponded closely with our findings.

Ranawat and associates [40] reported a much higher

symptomatic femoral neck-shaft angle (132�) but was still

lower than their respective contralateral asymptomatic

side. A decrease in femoral neck-shaft angle, although

small, could explain symptoms of unilateral FAI [40]. The

medial proximal femoral angle for our symptomatic group

was not substantially lower than our asymptomatic or

control group but was similar to previous findings for

progressive osteoarthritis [5]. The medial proximal femoral

angle measures between the femoral head-to-neck from the

greater trochanter as opposed to the neck-to-shaft angle.

The correct CT slice may not have been selected to locate

our superior greater trochanter, thus underestimating its

implication toward understanding the onset of osteoarthri-

tis. The symptomatic group’s femoral torsion corresponded

with previous findings, indicating an increased risk for la-

bral damage [15]. However, results for acetabular version

were inconclusive because several asymptomatic and

control participants demonstrated retroversion but did not

show any clinical signs or symptoms. This contradicts

previous findings for acetabular version associated with

symptoms [12, 26, 29, 41] and may not yet be adequate to

explain differences between symptomatic and asymptom-

atic individuals.

The stepwise DFA indicated that radial alpha angle,

femoral neck-shaft angle, and pelvic ROM were the best

classifiers. Including other parameters in the stepwise DFA

would not have substantially improved the predictive

power of the model. Alternatively, all parameters could

have been included in the DFA to obtain predictive func-

tions dependent on all anatomical and squat parameters.

However, this would not have predicted which parameters

were the most suitable for classification and, thus, would

not have established characteristics most potentially asso-

ciated with symptoms. Interestingly, the radial alpha angle

was more predictive than the axial alpha angle [43], reit-

erating that it should be the preferred alpha angle to

observe for the increased severity of the cam deformity [6,

7, 39, 43]. The femoral neck-shaft angle was considered as

a second discriminating parameter to distinguish symp-

tomatic from asymptomatic individuals, because it was

substantially different among the two groups. Although

medial proximal femoral angle and femoral torsion for the

symptomatic group were slightly lower, compared with

asymptomatic, the difference was not large enough for the

analysis to consider them as discriminating parameters.

Pelvic ROM was used as the final parameter to further

distinguish symptomatic from asymptomatic individuals.

The symptomatic group could not squat as low and had a

reduced pelvic ROM in comparison with the other groups,

reiterating the implementation of a maximal squat motion

as a functional diagnostic test in determining individuals at
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risk of developing hip symptoms. The inclusion of femoral

neck-shaft angle reveals that there is an association

between the neck orientation with a severe cam deformity

and dynamic hip motion, which improves previous under-

standings of the pathoanatomy [10, 14, 46]. Ultimately, for

mechanical impingement to occur as a result of the cam

morphology, symptoms could persist attributable to a

combination of several anatomical factors. Limited squat

depth is reflective of decreased pelvic mobility, putting the

hip further at risk of developing pain.

Our findings confirm the complex nature of impinge-

ment as well as other anatomical parameters that play

important roles in the onset of hip symptomatology. Con-

sequently, providing the clinicians with additional and

more specific anatomical measurements (eg, radial alpha

angle, femoral neck-shaft angle, pelvic ROM) can identify

who is at greater risk of coming to surgical intervention as

well as developing screening programs for the cam mor-

phology at risk of FAI.
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