

Pre-course Hip Symposium Bern 2023

Back to Life – Results of hip preservation surgery

Dr. med. Corinne A. Zurmühle, junior consultant

Departement of Orthopaedics Surgery and Traumatology University of Fribourg, HFR Cantonal Hospital Fribourg Switzerland

What we learnt in meantime...

Good results for decades if

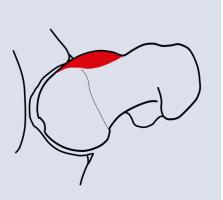
- we select the right patient at the right time
- we chose the right treatment option
- we clarify the expectations with the patient

What do we know concerning the results of FAI?

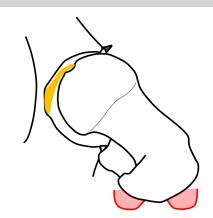
Cam

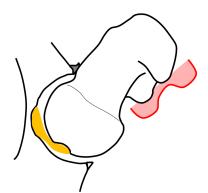
Inclusion

Pincer

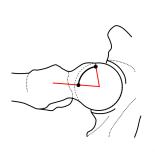

Impaction with subluxation

Excessive antetorsion


levering out anterior


Retrotorsion

levering out posterior

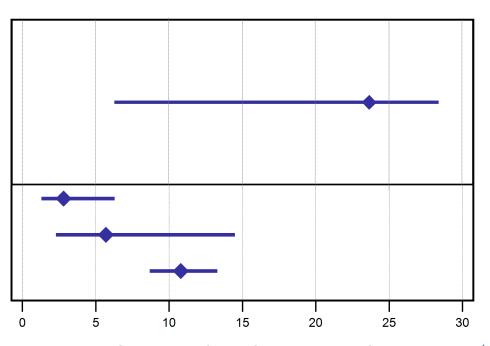


Natural history: How strong is the correlation?

Huge asphericity with

reduced range of motion

- osteoarthritis

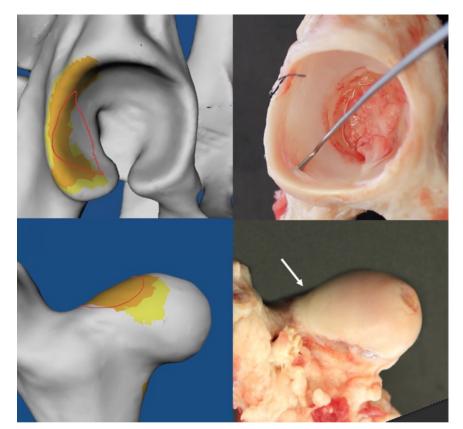


Sun - Melanoma

Alcohol - Liver cirrhosis

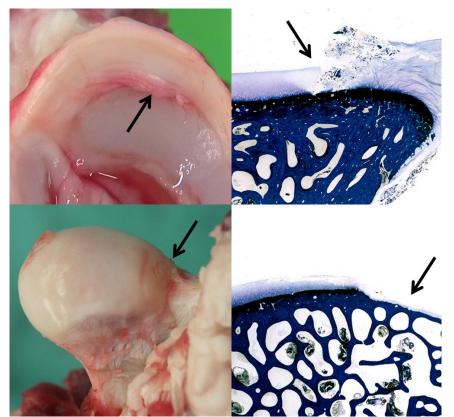
Smoking - Lung Cancer

Odds Ratio (± confidence interval)



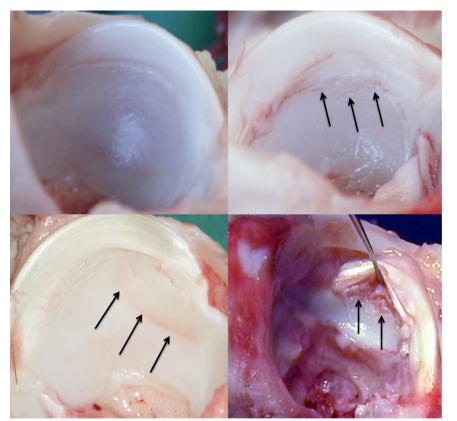
- Comparable hip anatomy and biomechanics
- Comparable MRI properties
- No predisposition for osteoarthritis
- Predictable range of motion
- Timelapse effect (time machine)
- Natural femoral asphericity

 Known pathomechanism - Joint damage appears at the level of impingement



Nötzli HP JBJS Br 2002 Ganz R CORR 2003 Beck M CORR 2004 Clohishy JBJS 2011 Thomas GE Osteoarthritis Cartillage 2014 Zurmühle CA Osteoarthritis Cartilage 2019

- Known pathomechanism Joint damage appears at the level of impingement
- Histological proof


Nötzli HP JBJS Br 2002 Ganz R CORR 2003 Beck M CORR 2004 Clohishy JBJS 2011 Thomas GE Osteoarthritis Cartillage 2014 Zurmühle CA Osteoarthritis Cartilage 2019

- Known pathomechanism -Joint damage appears at the level of impingement
- Histological proof
- More damage with longer ambulation time

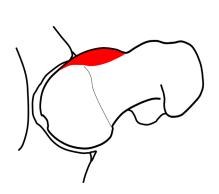
Nötzli HP JBJS Br 2002 Ganz R CORR 2003 Beck M CORR 2004 Clohishy JBJS 2011 Thomas GE Osteoarthritis Cartillage 2014 Zurmühle CA Osteoarthritis Cartilage 2019

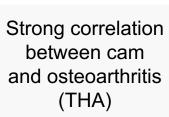
What do we know concering natural history of FAI?

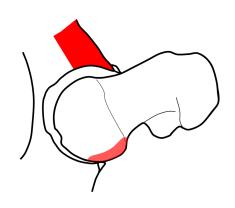
Cam

Inclusion

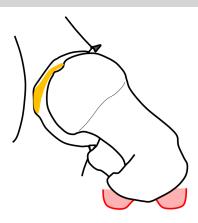
Pincer

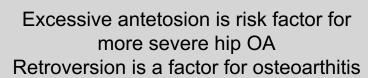

Impaction with subluxation

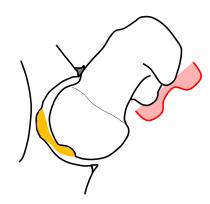

Excessive antetorsion


levering out anterior

Retrotorsion


levering out posterior





Study results are not conclusive
OA / no OA in cases with
LCE > 39 - 45°
More THA in retroversion

What are good results?

Surgery

- No pain
- Good function
- No osteoarthritis in young age

No revision

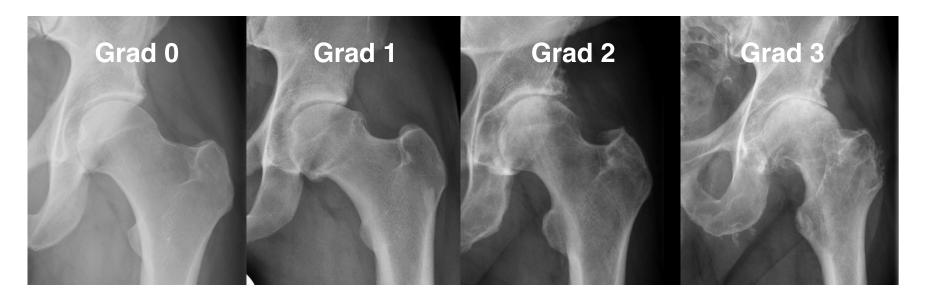
Patient related outcome scores

- Different scores in different studies
- Hip specific versus general health
- Content: Pain, activity of daily life, sport, function

- "Good function" in young versus old patient
- Prothesis versus hip preservation
- Retrospective evaluation

Patient related outcome scores

Scoring System of Merle d'Aubigné and Postel


Points	Pain	Range of Motion	Walking Ability
6	None	Flexion > 90°, abduction > 30°	Normal
5	Occasional	Flexion = 80 -90°, abduction > 15°	Slight limp
4	Disappears on rest	Flexion = 60 -80°, can reach foot	Short distance without cane
3	Limits activity	Flexion = 40 -60°	Permanent use of 1 cane
2	Prevents activity	Flexion < 40°	2 canes
1	Night pain	Ankylosis, good hip position	2 crutches
0	Permanent intense	Ankylosis, bad hip posi tion	None

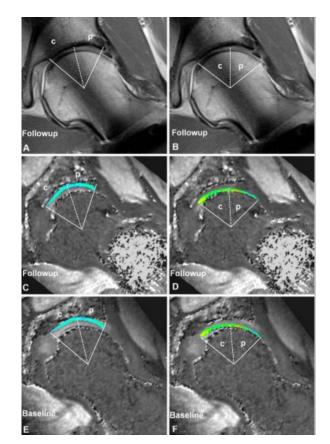
Interpretation

Excellent: 18 points Good: 15 - 17 points Fair: 12 - 14 points Poor: < 12 points

Radiological outcome parameters

Progression of osteoarthrits (Tönnis score)

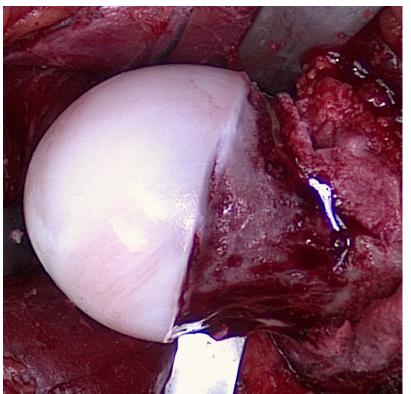
- Standard x-ray based followup
- Advanced signs of osteoarthritis

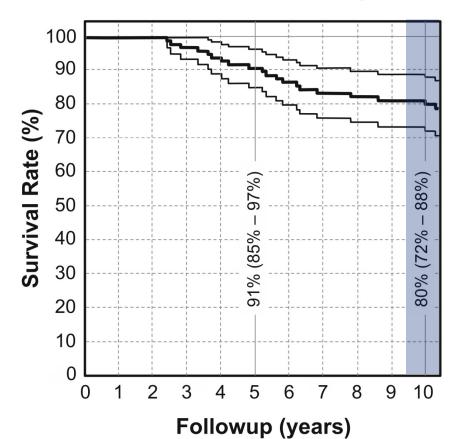


Radiological outcome parameters

MR-based followup

- Early signs of osteoarthritis
- Expensive cost
- Long acquisition time
- Special sequences and contrast agent


- Only for special questions
- Only in prospective studies


Results - Surgical hip dislocation

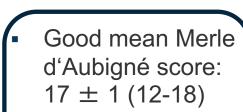
Results SHD – Survivorship

Retrospective study of 97 hips

- Worse clinical outcome (= Merle d'Aubigne Score < 15) in 3 hips
 (3%)
- Progression of osteoarthritis (Tönnis)in 8 hips (8%)
- Conversion to THA in 11 hips (11%)

Results SHD - Outcome

- Progression of osteoarthritis in 8%
- THA in 11%



Surgery

- 6% complications
- 45% revisions

Steppacher et al, CORR, 2014 Steppacher et al, CORR, 2015

Results SHD – Negative predictors

Category	Parameter	Hazard ratio [†] (95% confidence interval)	p value	Adjusted hazard ratio * (95% confidence interval)	p value
Demographic factors	Age > 40 years	4.9 (4.0–5.8)	< 0.001	5.9 (4.8–7.1)	0.002
	Weight > 100 kg	4.6 (3.3–5.9)	0.019		
	Body mass index $> 30 \text{ kg/m}^2$	5.1 (3.6–6.6)	0.033	5.5 (3.9–7.2)	0.041
Postoperative factors related	LCEA $< 22^{\circ}$ or $> 32^{\circ}*$	5.4 (4.3–6.5)	0.003	5.4 (4.2–6.6)	0.006
to surgical accuracy	$AI < 3^{\circ} \text{ or } > 13^{\circ}*$	5.3 (3.7–6.9)	0.037		
	Extrusion index $< 18\%$ or $> 28\%$ *	5.6 (4.5–6.7)	0.002		
	Total femoral coverage $< 72\%$ or $> 83\%$ *	3.1 (2.1–4.1)	0.029		
	Anterior femoral coverage < 15%*	3.7 (2.4–4.9)	0.038		
	Posterior femoral coverage < 34%*	3.4 (2.4–4.3)	0.011	4.8 (3.7–5.9)	0.006

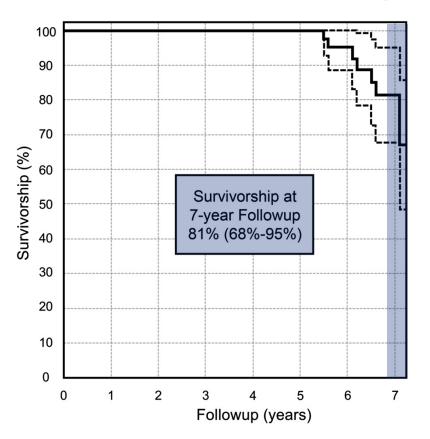
Age and body mass index

Steppacher et al, CORR, 2014 FR Steppacher et al, CORR, 2015


Results SHD – Negative predictors

Category	Parameter	(95% confidence interval)	p value	ratio [‡] (95% confidence interval)	p value
Demographic factors	Age > 40 years	4.9 (4.0–5.8)	< 0.001	5.9 (4.8–7.1)	0.002
	Weight > 100 kg	4.6 (3.3–5.9)	0.019		
	Body mass index $> 30 \text{ kg/m}^2$	5.1 (3.6–6.6)	0.033	5.5 (3.9–7.2)	0.041
Postoperative factors related	LCEA $< 22^{\circ}$ or $> 32^{\circ}*$	5.4 (4.3–6.5)	0.003	5.4 (4.2–6.6)	0.006
to surgical accuracy	$AI < 3^{\circ} \text{ or } > 13^{\circ}*$	5.3 (3.7–6.9)	0.037		
	Extrusion index $< 18\%$ or $> 28\%$ *	5.6 (4.5–6.7)	0.002		
	Total femoral coverage $< 72\%$ or $> 83\%$ *	3.1 (2.1–4.1)	0.029		
	Anterior femoral coverage < 15%*	3.7 (2.4–4.9)	0.038		
	Posterior femoral coverage < 34%*	3.4 (2.4–4.3)	0.011	4.8 (3.7–5.9)	0.006

- Age and body mass index
- Acetabular under- or overcoverage


Results - Hip Arthroscopy (HAS)

- Popular in sports medicine
- Improvement in clinical outcomes scores in at least 10-year follow-up
 - Heterogeneous indications
 - FAI
 - Labral tears
 - Dysplasia
 - Addresses only intraarticular pathomorphologies

Results HAS – Survivorship

- 7-year follow-up (OP between 2003 2008)
 - 52 hips in 52 patients
 - Mean age: 35 ± 12 years (16 63)
- 39 cam, 4 pincer, 9 mixed type impingement
- Merle d'Aubigné Score preoperative
 - Mean score: 14 ± 1 (8 15)

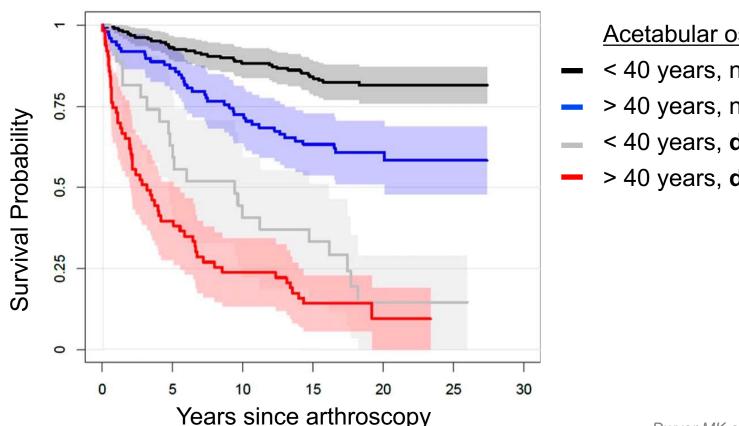
Results SHD - Outcome

Surgery

- Mean Merle d'Aubigné score: 16 ± 2 (7-18)
- 13% with score15

- Progression of osteoarthritis13%
- THA in 4%

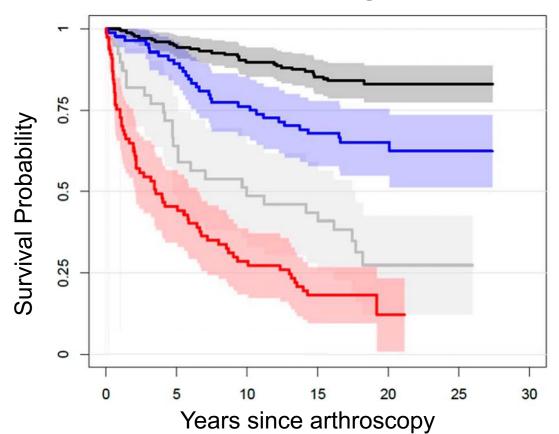
 17% revisions (offset / acetabular correction!)


Results HAS – Risk factors for revisions

Factor	Hazard ratio	p value
Demographic		_
Left hip	5.30 (1.08–26.12)	0.040
$BMI > 25 \text{ kg/m}^2$	3.89 (0.97–15.64)	0.056
$BMI < 25 \text{ kg/m}^2$	0.28 (0.07–1.14)	0.075
Preoperative radiographic paran	neters	
LCE angle $> 33^{\circ}$	4.63 (1.07–19.94)	0.040
LCE angle (per °)	1.15 (1.00–1.32)	0.045
$AI < 3^{\circ}$	95.58 (8.02–1162.64)	< 0.001
AI (per °)	0.77 (0.64–0.94)	0.009
Extrusion index (per %)	0.85 (0.73–1.00)	0.051
Pistol grip deformity (per °)	1.55 (1.34–1.78)	< 0.001
Surgical interventions		
Labrum refixation	3.86 (0.40–37.23)	0.242
Labrum excision	0.40 (0.08–1.96)	0.260
Postoperative radiographic para	meters	
Pistol grip (beta angle)	1.05 (1.00–1.09)	0.035

- Large acetabular coverage
 - Technical challenge
- Pistol grip deformity
 - Technical challenge
 - Retinacular vessels
- Persistant pistol grip deformity
 - Insufficient correction

Results HAS – Outcome Age and Osteoarthritis



- < 40 years, no damage
- > 40 years, no damage
- < 40 years, damage
- > 40 years, damage

Results HAS – Outcome Age and Osteoarthritis

Femoral osteoarthritis

- < 40 years, no damage</p>
- > 40 years, no damage
- < 40 years, damage</p>
- > 40 years, damage

Significance (p-value)

- Age: 0.011
- Cartilage damage: 0.001

Results HAS – Outcome predictors

Negative predictors

- Preoperative osteoarthitis (Tönnis grades >1)
 - 54% conversion to THA
- Labral debridement / resection
- Age ≥ 40-50 years
- Obesity
- Huge deformity
- Low preoperative clinical scores
- Dysplastic hips / acetabular overcorrection
- Decreased femoral torsion

Positive predictors

- Tönnis score < 1
- Labral repair
- Age ≤ 40-50 years
- Normal acetabular coverage
- > 2mm joint space

Zimmerer et al, Arthroscopy, 2021 Kucharik MP et al, Orthop J Sports Med 2022 Carton P et al Am J Sports Med 2021 Büchler L et al, CORR 2021 Menge TJ et al, J Bone Joint Surg Am, 2017

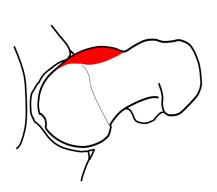
UNI

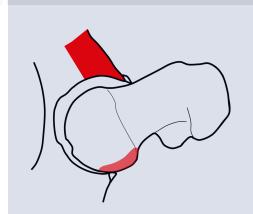
FR

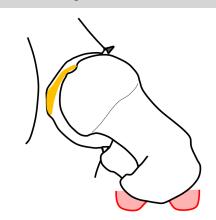
What do we know concerning the results of FAI?

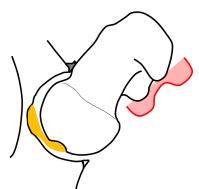
Cam

Inclusion

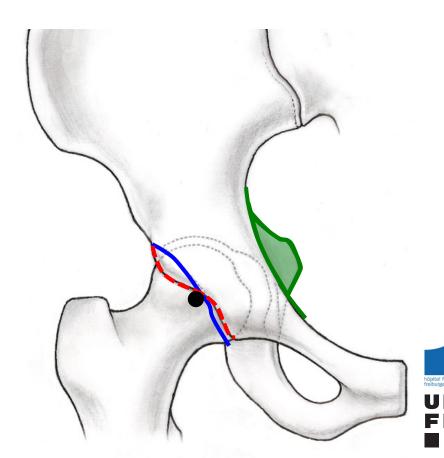

Impaction with subluxation


Excessive antetorsion


levering out anterior


Retrotorsion

levering out posterior

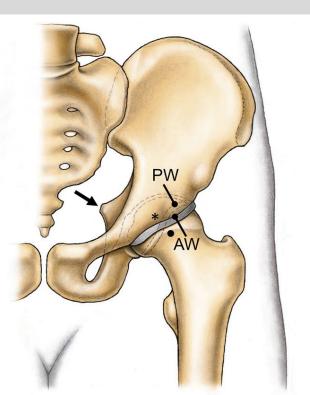


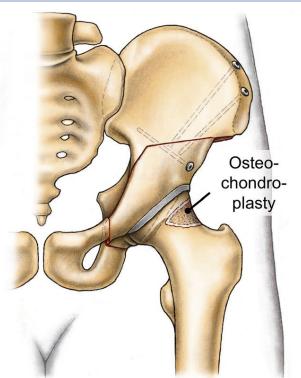
Results – Reversed periaceetabular osteotomy (rPAO)

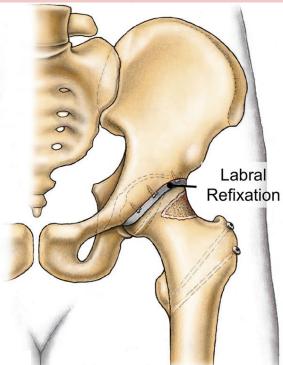
Definition of acetabular retroversion

- Cross-over sign
- Posterior wall sign
- Ischial spine sign

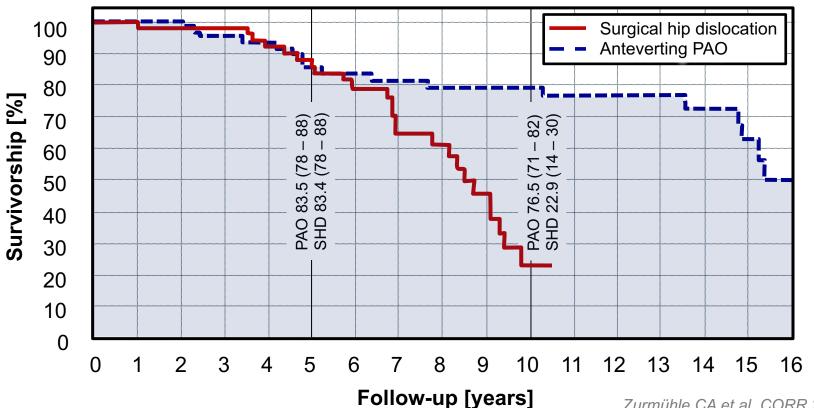
Important reason for pincer type femoroacetabular impingement




Results rPAO– Technique


Acetabular retroversion

Reversed PAO with offset correction


Surgical hip dislocation with rim trimming

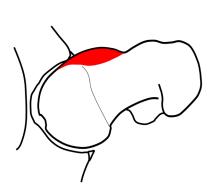
Results rPAO – Survivorship

What do we know concerning the results of FAI?

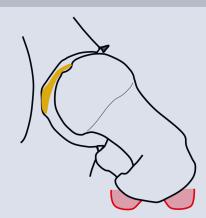
Cam

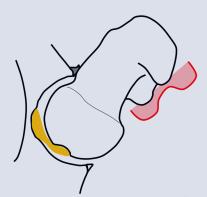
Inclusion

Pincer

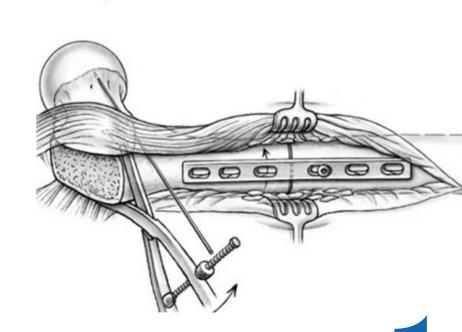

Impaction with subluxation

Excessive antetorsion


levering out anterior


Retrotorsion

levering out posterior


Results femoral osteotomies

Different techniques

- Intramedullary nail versus plate
- Open versus closed
- +/- surgical hip dislocation
- Different levels of corrections

Limitations

- Small cohorts
- Short followups
- Hetergenous indications

Results Femoral Osteotomies - Outcome

Imaging

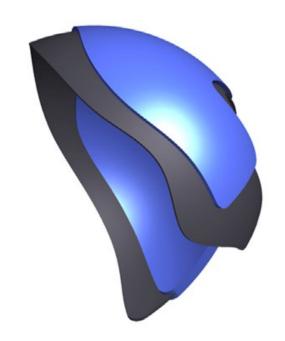
Surgery

- Good mean Merle d'Aubigné score: 16 ± 2 (12–18)
- 80% would do surgery again

- No osteoarthritis (CAVE short followup
- No THA

- No complications
- 64% hardware removal

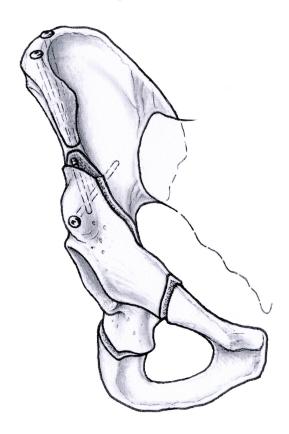
Lerch et al, HIP, 2020


Natural history – Hip dysplasia

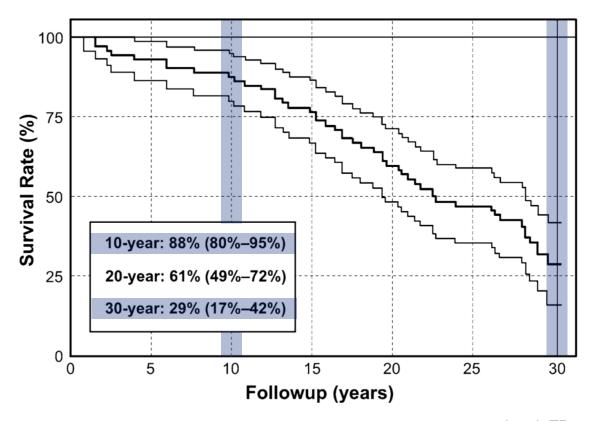
Pathognomic factors

- Reduced joint surface and coverage
- Joint instability with luxation or subluxation

Natural history


 4.3x more degenerative changes than in normal hips

Murphy SB et al JBJS 1995 Weinstein SL et al CORR 1987 Reijman A et al Arthritis Rheum 2005 Jacobsen S et al Acta Orthop 2005 Steppacher et al Osteoarthritis Cartillage 2014


Results – periacetabular osteotomy (PAO)

- 30-year followup (OP 1984 1987)
 - 75 hips in 63 patients
 - Mean age: 29 ± 12 years (13 56)
- Merle d'Aubigné Score preoperative
 - Mean 15 \pm 2 (9-18)
- Endpoint
 - Conversion to THA
 - Progression of osteoarthritis (> 1 Tönnis Score)
 - Merle d'Aubigne Score < 15 points</p>

Lerch TD et al, CORR, 2017

Results PAO – Survivorship

Results PAO - Outcome

Imaging

Surgery

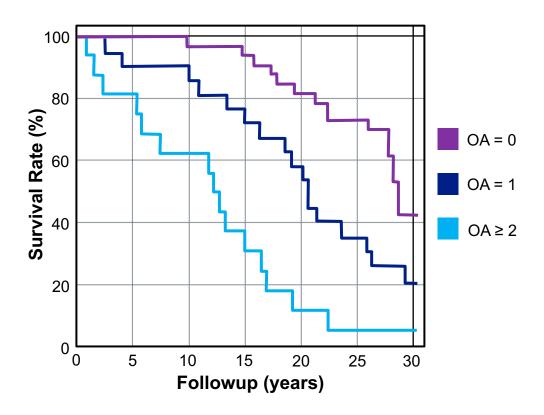
- Good mean Merle d'Aubigné score:
 15 ± 2 (9–18)
- 9% bad outcome score

- osteoarthritis progression in 5%
- 43% no THA (at 30year followup

Learning curve included!

UNIVERSITY OF FRIBOURG | DEPARTMENT OF ORTHPAEDIC SURGERY

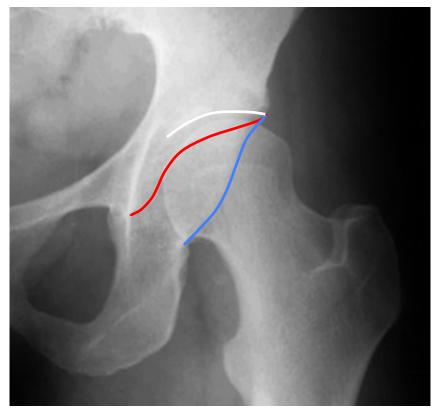
Results PAO – Negative predictors

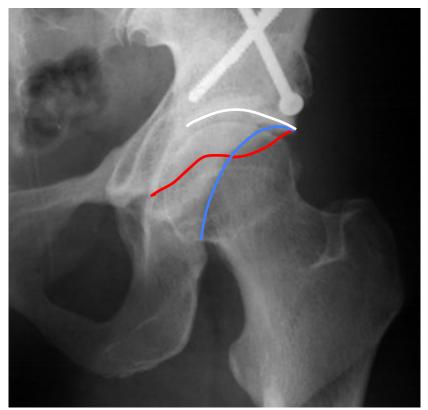

Parameter	Hazard ratio* (95% confidence interval)	p value	Hazard ratio [†] (95% confidence interval)	p value
Age > 30 years	3.8 (3.0–4.6)	< 0.001		
Age > 40 years	4.3 (3.7–4.9)	< 0.001		
Preoperative Merle d'Aubigné- Postel score [8] < 15	4.1 (3.5–4.6)	< 0.001	3.4 (2.7–4.2)	< 0.001
Preoperative Harris hip score [13] < 70	5.8 (5.2–6.4)	< 0.001		
Preoperative limp	1.7 (1.4–1.9)	0.001		
Preoperative pain in flexion and internal rotation (anterior impingement test)	3.6 (3.1–4.2)	< 0.001	2.6 (1.8–3.3)	0.006
Preoperative pain in extension and external rotation (posterior impingement test)	2.5 (1.7–3.2)	0.021		
Preoperative internal rotation < 20°	4.3 (3.7–4.9)	< 0.001		
Preoperative osteoarthritis [51] Tönnis Grade > 1	5.7 (5.0–6.4)	< 0.001	2.7 (1.9–3.5)	0.014
Postoperative anterior overcoverage (anterior coverage > 27%) [46]	3.2 (2.5–3.9)	0.001	2.5 (1.7–3.3)	0.021
Postoperative retroversion [‡]	4.8 (3.4–6.3)	0.034		

- Poor function
- Severe pain

Pre-existing joint degeneration

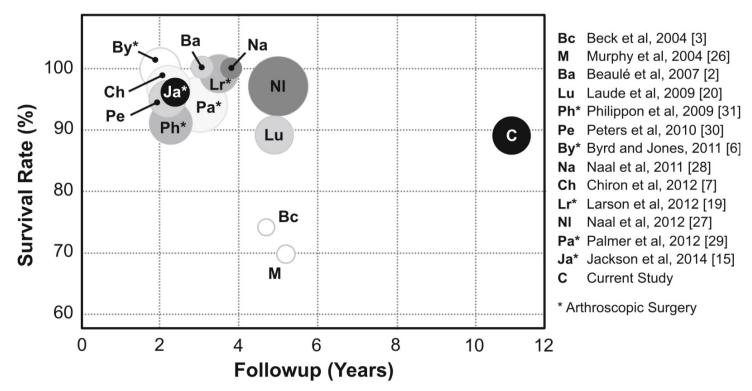
Results PAO – Negative predictors


Results PAO – Negative predictors


Parameter	Hazard ratio* (95% confidence interval)	p value	Hazard ratio [†] (95% confidence interval)	p value
Age > 30 years	3.8 (3.0–4.6)	< 0.001		
Age > 40 years	4.3 (3.7-4.9)	< 0.001		
Preoperative Merle d'Aubigné- Postel score [8] < 15	4.1 (3.5–4.6)	< 0.001	3.4 (2.7–4.2)	< 0.001
Preoperative Harris hip score [13] < 70	5.8 (5.2–6.4)	< 0.001		
Preoperative limp	1.7 (1.4–1.9)	0.001		
Preoperative pain in flexion and internal rotation (anterior impingement test)	3.6 (3.1–4.2)	< 0.001	2.6 (1.8–3.3)	0.006
Preoperative pain in extension and external rotation (posterior impingement test)	2.5 (1.7–3.2)	0.021		
Preoperative internal rotation < 20°	4.3 (3.7–4.9)	< 0.001		
Preoperative osteoarthritis [51] Tönnis Grade > 1	5.7 (5.0–6.4)	< 0.001	2.7 (1.9–3.5)	0.014
Postoperative anterior overcoverage (anterior coverage	3.2 (2.5–3.9)	0.001	2.5 (1.7–3.3)	0.021
> 27%) [46]				
Postoperative retroversion [‡]	4.8 (3.4–6.3)	0.034		

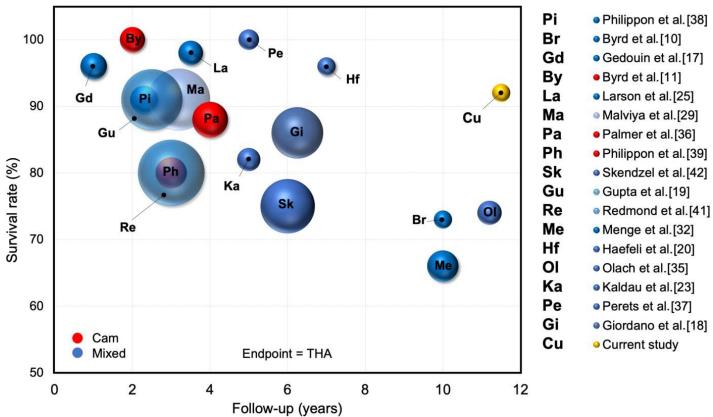
miscorrection

Results PAO – Acetabular retroversion

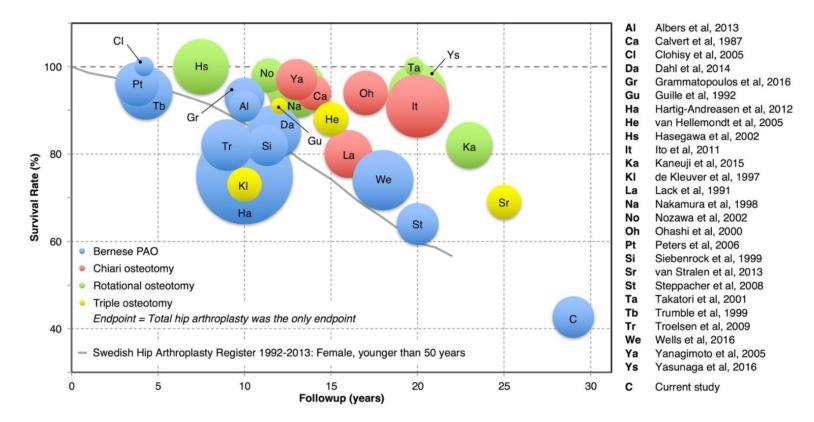

Overview complications in hip preservation surgery

HAS (3.3-8%)	CHL (9%)	PAO (9%)	Sink
Heteotopic ossification I+II 0.5-19% Dysesthesia LCFN Temporary Nerv lesion 0.9% latrogenic lesions 0.7%	Heteotopic ossification I+II (1.8%)	Heteotopic ossification I+II Dysesthesia LCFN	ı
Superficial infections 0.2%	Delayed union trochanteric osteotomy Neuropraxia sciatic nerve	Delayed union os pubis Fracture posterior column Neuropraxia femoral nerve	II
A -II i 0 00/	Fracture greater trochanter	Hamatana I was ad dala a ana	

Adhesions 0.2% Deep infection 0.02% Intraabdominal extravasate 0.04%	Fracture greater trochanter Wound infection Adhesions (6%) Trochanter refixation (2%)	Hematome / wound dehiscence Deep wound infection	III
latrogenic lesions (4.7-50%) Femoral neck fracture DVT 0.09%, PE 0.01% AVN 0.02%, Death 0.01%	DVT Lesion sciatic nerve (0.3%)	DVT Lesion sciatic nerve (0.3%)	IV



Results SHD – Literatur overview



Results HAS – Literatur overview

Results PAO – Literatur overview

Summery

- Hip preservation surgery is succesful
 - Almost 80% with good clinical outcome and without progression of osteoarthris and THA after 10 years and 30% after 30 years
- Include risk factors in decision making
 - Pre-existing osteoarthritis (> Tönnis 1)
 - Age > 40 50 years
 - Obesity
- The right intervention for the pathomorphology in question
 - Intra- versus extraarticular impingement
 - Relevant problem of femoral torsion
 - Reversred PAO versus trimming in acetabular retroversion

